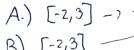
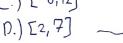

GSI Copy


MATH 1A Worksheet(Jan 29th)


1. Complete the following table

\boldsymbol{x}	1	2	3	4	5
f(x)	3	1	4	2	8
g(x)	1	3	5	3	2
$f \circ g(x)$	3	4	8	4	1

$$(-4)$$
: (e) $y = f(|x|)$

(a)
$$y = f(x) + 3$$
; (b) $y = 4f(x)$; (c) $y = f(\frac{1}{4}x)$; (d) $y = f(x - 4)$; (e) $y = f(|x|)$

3. Given the following pairs of functions f, g, identify their composite function $f \circ g$ and an apppropriate domain.

(a)
$$f(x) = x + 1, g(x) = x - 1;$$
 $f(q(x)) = x - 1;$

(b)
$$f(x) = \sqrt{x}$$
, $g(x) = x^2$; $f(x) = |x|$

$$(c) f(x) = x^2, g(x) = \sqrt{x}; \quad \ell(x) = x$$

appropriate domain.

(a)
$$f(x) = x + 1, g(x) = x - 1;$$
 $f(g(x)) \in X$ \mathbb{R}

(b) $f(x) = \sqrt{x}, g(x) = x^2;$ $f(g(x)) \in \mathbb{R}$

(c) $f(x) = x^2, g(x) = \sqrt{x};$ $f(g(x)) \in X$

(d) $f(x) = \frac{1}{x}, g(x) = \tan x.$ $f(g(x)) \in X$

Civen $f(x) = x^2$

- 4. Given $f(x) = x^2$.

 - (a) Does there exist function g such that g ∘ f(x) = x? If so, give an example; if not, explain why. No form f(x) = f(-x), so g(x) = g(x) = g(x) = g(x) = f(-x).
 (b) Does there exist function g such that f ∘ g(x) = x(over the domain of g)? If so, give for x ≠ x = x
 an example; if not, explain why. Yos g(x) = x(over the domain of g)? If so, give for x ≠ x
 - (c) Answer these two questions when the domain of f becomes $[0, +\infty) = \{x : x \ge 0\}$. Yes 5.
- 5. A spherical balloon is being inflated and the radius of the balloon is increasing at a rate of 3cm/s while the initial radius (that is, at t=0) of this ballon is 2cm.
 - (a) Express the radius r as a function of time t. You will also that t = r
- 6. Given two functions f, g
 - (a) If g is even, can one tell the parity of $f \circ g$ or $g \circ f$? Explain why or why not. No $f \circ g$ is odd, can one tell the parity of $f \circ g$ or $g \circ f$? Explain why or why not. No $f \circ g \circ g$

 - (c) In addition to assumption in (b), what if f is even or odd? Answer the same question.